Attention-deficit/hyperactivity disorder (ADHD) is one of the most common psychiatric diagnoses in childhood and adolescence. It is characterized by age-inappropriate levels of inattention, impulsivity, and hyperactivity and is associated with long-term academic, social, and mental health problems (1, 2). Both pharmacotherapy and behavior therapy yield short-term symptom reduction in individuals with ADHD. Psychostimulants, in particular, have been shown to improve attention and to decrease activity levels in children in the short term. However, their impact on academic performance and quality of life is low (3, 4), and initial symptomatic effects are not usually sustained on long-term follow-up (5, 6). The unproven long-term efficacy of commonly used ADHD drugs, together with concerns in regard to adverse effects of medication, which can be as serious as growth retardation and severe cardiovascular events (7,8), has led to a search for alternative treatment options.A range of nutrients have been linked to brain development and functioning, and diet may be a relevant factor in the high incidence and prevalence of mental disorders (9). As early as the 1920s, a possible association between food and hyperkinetic behavior was suggested (10). Children with ADHD and healthy controls appear to have different dietary patterns (11)(12)(13). Growing evidence suggests that nutrients, diet, and other lifestyle factors may play a role in the pathophysiology and management of mental disorders (14), including ADHD (15, 16).Major dietary compounds proposed to be helpful in the treatment of ADHD include micronutrients, such as minerals and vitamins, and polyunsaturated fatty acids (PUFAs). Several studies have demonstrated reduced blood plasma levels of various minerals, such as magnesium, iron, and zinc in children with ADHD at group level, and their supplementation may reduce ADHD symptoms in individuals with respective deficiencies. However, evidence in support of this is lacking (17). The questions of whether vitamin deficiencies are involved in the pathophysiology of ADHD and whether vitamin supplements exert therapeutic effects also remain open (15).The role of omega-3 PUFAs in the pathophysiology and therapy of ADHD is controversial (15,18). Since blood levels of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA) have been found to be significantly decreased in children with ADHD compared to controls, numerous clinical studies have examined the effects of omega-3 PUFA supplementation on ADHD symptoms. A systematic review of meta-analyses of double-blind placebo-controlled trials, in which ADHD symptoms were rated by parents and teachers, concluded that the effect sizes for PUFA supplementation were small (19). The pooling of the negative results of a more recent study with previous findings showed no overall effect of omega-3 PUFAs on