Sucrase insufficiency has been observed in children with of functional bowel disorders (FBD) and symptoms of dietary carbohydrate intolerance may be indistinguishable from those of FBD. A two-phase 13C-sucrose/13C-glucose breath test (13C-S/GBT) was used to assess sucrase activity because disaccharidase assays are seldom performed in adults. When 13C-sucrose is hydrolyzed to liberate monosaccharides, oxidation to 13CO2 is a proportional indicator of sucrase activity. Subsequently, 13C-glucose oxidation rate was determined after a secondary substrate ingestion (superdose) to adjust for individual habitus effects (Phase II). 13CO2 enrichment recovery ratio from 13C-sucrose and secondary 13C-glucose loads reflect the individualized sucrase activity [Coefficient of Glucose Oxidation for Sucrose (CGO-S)]. To determine if sucrase insufficiency could be a factor in FBD, 13C-S/GBT was validated using subjects with known sucrase gene mutation status by comparing 13CO2-breath enrichment with plasma 13C-glucose enrichment. 13C-S/GBT was used to assess sucrose digestion in FBD patients and asymptomatic controls. 13CO2-breath enrichment correlated with the appearance of 13C-sucrose-derived glucose in plasma (r
2 = 0.80). Mean, control group CGO-S-enrichment outcomes were 1.01 at 60′, 0.92 at 75′, and 0.96 at mean 60′–75′ with normal CGO-S defined as >0.85 (95% C.I.). In contrast, FBD patients demonstrated lower CGO-S values of 0.77 at 60′, 0.77 at 75′, and 0.76 at mean 60′–75′ (Chi Square: 6.55; p < 0.01), which points to sucrose maldigestion as a cause of FBD.