This research aims to discuss and control the chaotic behaviour of an autonomous fractional biological oscillator. Indeed, the concept of fractional calculus is used to include memory in the modelling formulation. In addition, we take into account a new auxiliary parameter in order to keep away from dimensional mismatching. Further, we explore the chaotic attractors of the considered model through its corresponding phase-portraits. Additionally, the stability and equilibrium point of the system are studied and investigated. Next, we design a feedback control scheme for the purpose of chaos control and stabilization. Afterwards, we introduce an efficient active control method to achieve synchronization between two chaotic fractional biological oscillators. The efficiency of the proposed stabilizing and synchronizing controllers is verified via theoretical analysis as well as simulations and numerical experiments.