Phytoplankton are dominant primary producers and key indicators in aquatic ecosystems. Understanding the controlling factors on the structure of phytoplankton assemblages is fundamental, but particularly challenging at the land–ocean interface. To identify the patterns and predictors of phytoplankton assemblage structure in the Ria Formosa coastal lagoon (south Portugal), this study combined phytoplankton abundance along a transect between the discharge point of a wastewater treatment plant and a lagoon inlet, over two years, with physico-chemical, hydrographic, and meteo-oceanographic variables. Our study identified 147 operational taxonomic units (OTUs), and planktonic diatoms (60–74%) and cryptophyceans (17–25%) dominated the phytoplankton in terms of abundance. Despite strong lagoon hydrodynamics, and the lack of spatial differences in the phytoplankton abundance and most diversity metrics, the multivariate analysis revealed differences in the assemblage structure between stations (p < 0.001) and seasons (p < 0.01). Indicator analysis identified cryptophyceans as lagoon generalists, and 11 station-specific specialist OTUs, including Kryptoperidinium foliaceum and Oscillatoriales (innermost stations) and potentially toxigenic species (Pseudo-nitzschia and Dinophysis; outer lagoon station, p < 0.05). Water temperature, pH, and nutrients emerged as the variables that best explained the changes in the phytoplankton assemblage structure (p < 0.001). Our findings provide insight into the relevance of local anthropogenic and natural forcings on the phytoplankton assemblage structure and can be used to support the management of RF and other coastal lagoons.