“…1) with momentum p = (0, ±1), so that a general point on them has coordinates (x, y) = (±a cosh U 1 , y 0 + t), t ∈ C. The imaginary part of the action is therefore the imaginary part of the y displacement needed to get to real coordinate space, which is ImS = p y Im(y 0 ) = b sinh U 1 . It remains to evaluate the Poisson bracket in the denominator of (14), which, from (16), takes the form. n 4 {M, M * } = 4i{A − B 2 + C 2 , BC}.…”