Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To effectively inform infectious disease control strategies, accurate knowledge of the pathogen’s transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance. Case-based surveillance, in which infected individuals are identified by a positive test, is the predominant form of surveillance for many pathogens, and was used extensively during the COVID-19 pandemic. However, there can be many biases present in case-based surveillance indicators due to, for example test sensitivity, changing testing behaviours and the co-circulation of pathogens with similar symptom profiles. Here, we develop a mathematical description of case-based surveillance of infectious diseases. By considering realistic epidemiological parameters and situations, we demonstrate many of the potential biases in common surveillance indicators based on case-based surveillance data. Crucially, we find that many of these common surveillance indicators (e.g. case numbers, test-positive proportion) are heavily biased by circulating pathogens with similar symptom profiles. Future surveillance strategies could be designed to minimize these sources of bias and uncertainty, providing more accurate estimates of a pathogen’s transmission dynamics and, ultimately, more targeted application of public health measures.
To effectively inform infectious disease control strategies, accurate knowledge of the pathogen’s transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance. Case-based surveillance, in which infected individuals are identified by a positive test, is the predominant form of surveillance for many pathogens, and was used extensively during the COVID-19 pandemic. However, there can be many biases present in case-based surveillance indicators due to, for example test sensitivity, changing testing behaviours and the co-circulation of pathogens with similar symptom profiles. Here, we develop a mathematical description of case-based surveillance of infectious diseases. By considering realistic epidemiological parameters and situations, we demonstrate many of the potential biases in common surveillance indicators based on case-based surveillance data. Crucially, we find that many of these common surveillance indicators (e.g. case numbers, test-positive proportion) are heavily biased by circulating pathogens with similar symptom profiles. Future surveillance strategies could be designed to minimize these sources of bias and uncertainty, providing more accurate estimates of a pathogen’s transmission dynamics and, ultimately, more targeted application of public health measures.
To effectively inform infectious disease control strategies, accurate knowledge of the pathogen’s transmission dynamics is required. The infection incidence, which describes the number of new infections in a given time interval (e.g., per day or per week), is fundamental to understanding transmission dynamics, and can be used to estimate the time-varying reproduction number and the severity (e.g., the infection fatality ratio) of a disease. The timings of infections are rarely known and so estimates of the infection incidence often rely on measurements of other quantities amenable to surveillance. Case-based surveillance, in which infected individuals are identified by a positive test, is the pre-dominant form of surveillance for many pathogens, and was used extensively during the COVID-19 pandemic. However, there can be many biases present in case-based surveillance indicators due to, for example, test sensitivity and specificity, changing testing behaviours, and the co-circulation of pathogens with similar symptom profiles. Without a full understanding of the process by which surveillance systems generate data, robust estimates of the infection incidence, time-varying reproduction number, and severity based on these data cannot be made. Here we develop a mathematical description of case-based surveillance of infectious diseases. By considering realistic epidemiological parameters and situations, we demonstrate potential biases in common surveillance indicators based on case-based surveillance data. The description is highly general and could be applied to a diverse set of pathogens and situations. The mathematical description could be used to inform inference of infection incidence using existing data, with a full understanding of where bias and uncertainty will be present in any such analysis. Future surveillance strategies could be designed to minimise these sources of bias and uncertainty, providing more accurate estimates of a pathogen’s transmission dynamics and, ultimately, more targeted application of public health measures.
The SARS-CoV-2 virus continues to cause substantial morbidity and mortality, particularly during the winter period. The Winter Covid Infection Study (WCIS) ran from the 14th of November 2023 to the 7th of March 2024, and enabled the UK Health Security Agency to publish fortnightly estimates of the incidence and prevalence of SARS-CoV-2. Testing was performed using Lateral Flow Devices (LFD), and a repeat testing design was used to estimate key epidemiological parameters of SARS-CoV-2. This facilitated the estimation of time-varying prevalence, incidence, and test sensitivity. A Bayesian multilevel regression and poststratification model was developed to produce representative and unbiased estimates. In England and Scotland, prevalence peaked at 4.54% (95% CI: 3.90 to 5.24), and incidence peaked at 498 (95% CrI: 429 to 585) new infections per 100,000 individuals per day. The average LFD test sensitivity in England and Scotland during the study was estimated to be 72.1% (95% CrI: 70.3, 74.0), though due to epidemic phase bias this varied from a minimum value of 68.6% (95% CrI: 66.4 to 70.7) to a maximum value of 77.2% (95% CrI: 75.3 to 79.2). The novel study design of WCIS addressed key survey design challenges faced by previous large-scale SARS-CoV-2 population prevalence studies. The study demonstrated the utility and cost-benefit of LFD tests in large community surveys of prevalence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.