2014
DOI: 10.1111/mbe.12043
|View full text |Cite
|
Sign up to set email alerts
|

Differences in Brain Activation Between Novices and Experts in Science During a Task Involving a Common Misconception in Electricity

Abstract: Science education studies have revealed that students often have misconceptions about how nature works, but what happens to misconceptions after a conceptual change remains poorly understood. Are misconceptions rejected and replaced by scientific conceptions, or are they still present in students' minds, coexisting with newly acquired scientific conceptions? In this study, we use functional magnetic resonance imaging (fMRI) to compare brain activation between novices and experts in science when they evaluate t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

12
109
3
7

Year Published

2014
2014
2023
2023

Publication Types

Select...
10

Relationship

5
5

Authors

Journals

citations
Cited by 128 publications
(131 citation statements)
references
References 62 publications
12
109
3
7
Order By: Relevance
“…In order to unveil the reasoning processes associated with intuitive interference and how we overcome it, we and other research groups have recently started employing cognitive psychology and neuroscience methodologies, such as reaction time and brain imaging (e.g., Dunbar, Fugelsang, & Stein, 2007;Masson, Potvin, Riopel, & Foisy, 2014;Stavy, Goel, Critchley, & Dolan, 2006). We believe that employing these methodologies can contribute to a better understanding of students' difficulties and reasoning processes, and hence to improvements in science and mathematics education.…”
Section: Example From Geometrymentioning
confidence: 99%
“…In order to unveil the reasoning processes associated with intuitive interference and how we overcome it, we and other research groups have recently started employing cognitive psychology and neuroscience methodologies, such as reaction time and brain imaging (e.g., Dunbar, Fugelsang, & Stein, 2007;Masson, Potvin, Riopel, & Foisy, 2014;Stavy, Goel, Critchley, & Dolan, 2006). We believe that employing these methodologies can contribute to a better understanding of students' difficulties and reasoning processes, and hence to improvements in science and mathematics education.…”
Section: Example From Geometrymentioning
confidence: 99%
“…These authors concluded that inhibition is most likely involved in the explanation of the improvement of answers as children grow older (ages 8 -14). Other studies that considered accuracy, reaction times or fMRI data were led by Houdé (2000); Houdé, Pineau, Leroux, Poirel, Perchey, Lanoë et al (2011);Houdé, Zago, Mellet, Moutier, Pineau, Mazoyer et al (2000); Dunbar, Fugelsang & Stein (2007); ; ;Potvin, Turmel & Masson (2014); Masson, Potvin, Riopel & Brault-Foisy (2014); Kelemen & Rosset (2009) and Kelemen, Rottman & Seston (2012). These authors have concluded that inhibition could play an important role in the production of correct answers when anterior knowledge could potentially interfere.…”
mentioning
confidence: 99%
“…Soal-soal yang sederhana dapat dikerjakan, tetapi dengan soal yang sedikit lebih sulit dapat memunculkan kembali miskonsepsi, (3) seringkali terjadi regresi, yaitu siswa yang sudah pernah mengatasi miskonsepsi dan beberapa bulan kemudian salah lagi, (4) dengan ceramah yang bagus, miskonsepsi tidak dapat dihilangkan atau dihindari, (5) siswa, mahasiswa, guru, dosen, maupun peneliti dapat terkena miskonsepsi, (6) guru dan dosen pada umumnya tidak mengetahui miskonsepsi yang lazim antara siswa dan tidak menyesuaikan proses belajar mengajar dengan miskonsepsi siswa, (7) siswa yang pandai dan yang lemah keduanya memiliki potensi miskonsepsi, misal seseorang siswa terpandai mendapat skor di tengah pada tes miskonsepsi, dan (8) kebanyakan cara remediasi yang dicoba belum berhasil [5]. [6]. Hal ini mendukung pernyataan bahwa sangat sulit untuk menghilangkan miskonsepsi yang dimiliki seseorang.…”
Section: Pendahuluanunclassified