In the context of global climate change, monitoring focused on temperature and benthic animals in intertidal flats and the development of metrics to assess climate change and ecosystem responses are essential for a sustainable society. However, few studies have assessed the relationship between intertidal sediment temperature and the distribution of benthic animals. To address this gap, in the present study, intertidal sediment temperatures were observed in 12 intertidal flats in 11 survey areas over 335 days, from October 2, 2019, to August 31, 2020, using water temperature data loggers. The characteristics of intertidal sediment temperatures were variable among the survey areas, and a correlation analysis suggested that such characteristics are possibly influenced by various spatial-scale factors, such as geographical, basin, and habitat scales. Furthermore, two sentinel crab species, Macrophthalmus japonicus and Macrophthalmus banzai were collected, and the number of wintering individuals of each species was estimated based on their carapace width to analyze the changes in abundances of the two species in each survey area. The results show that the number of days with daily minimum temperature ≥ 19 °C was the factor that influenced the abundance rate, suggesting that M. japonicus and M. banzai populations may decrease and increase, respectively, according to future climate change in Japan. Our findings emphasize the importance of long-term monitoring of sediment temperatures and benthic animals in intertidal flats to evaluate the influence of future climate change.