In many fishes, individuals prefer to associate with phenotypically similar or conspecific individuals (conspecific cueing). Such phenotypic segregation can be an important evolutionary driver, for example, in intralacustric sympatric speciation processes. I examined conspecific cueing in two species of sympatric pupfish from Laguna Chichancanab in southern Mexico: the little shoaling and highly territorial Cyprinodon beltrani and the highly shoaling but non-territorial C. simus. Females were tested for shoal species preferences in two testing scenarios:(1) a sequential choice test where shoals of four conspecific or four heterospecific (Cyprinodon sp. or Poecilia reticulata) females were presented in succession, and (2) a simultaneous choice test where female shoals of both Cyprindon species were presented concurrently. Overall, higher shoaling in C. simus was corroborated in this study. In the sequential test, no effect of the type of stimulus shoal (con-or heterospecific) on shoaling behavior was detected. In the simultaneous tests, C. beltrani, but not C. simus females showed a preference for the conspecific shoal. It seems possible that C. simus females did not evolve species recognition mechanisms because no other Cyprinodon species in the Laguna Chichancanab shows equally high shoaling, which automatically leads to the formation of singlespecies (i.e., C. simus-) shoals. C. simus males do not establish long-term territories, but rather spawn within shoals, whereas C. beltrani females approach males in their breeding territories to spawn. I discuss that this behavioral difference still provides a powerful reproductive isolation mechanism even in the absence of conspecific cueing in C. simus.