Persistent inward currents (PICs) play an essential role in setting motor neuron gain and shaping motor unit firing patterns. Estimates of PICs in humans can be made using the paired motor unit analysis technique, which quantifies the difference in discharge rate of a lower-threshold motor unit at the recruitment onset and offset of a higher-threshold motor unit (∆F). Because PICs are highly dependent on the level of neuromodulatory drive, ∆F represents an estimate of level of neuromodulation at the level of the spinal cord. Most of the estimates of ∆F are performed under constrained, isometric, seated conditions. In the present study, we used high-density surface EMG arrays to discriminate motor unit firing patterns during isometric seated conditions with torque or EMG visual feedback and during unconstrained standing anterior-to-posterior movements with RMS EMG visual feedback. We were able to apply the paired motor unit analysis technique to the decomposed motor units in each of the three conditions. We hypothesized that ∆F would be higher during unconstrained standing anterior-to-posterior movements compared to the seated conditions, reflecting an increase in the synaptic input to MNs drive while standing. In agreement with previous work, we found that there was no evidence of a difference in ∆F between the seated and standing postures, although slight differences in the initial and peak discharge rates were observed. Taken together, our results suggest that both the standing and seated postures are likely not sufficiently different--both being "upright" postures--to result in large changes in neuromodulatory drive.