Background/Aim: To determine the interaction of gemcitabine in chemoradiotherapy with heavy carbon ions in vitro in a mucoepidermoid carcinoma (MEC) cell line. Materials and Methods: The human lymphatic MEC metastasis cell line NCI-H292 was used. The cells were treated with photons, carbon ions, and gemcitabine. Survival fractions (SF), apoptosis, and cell cycle progression were analyzed. A paired two-sided t-test was used. Significance was defined as p<0.05. Results: Cell proliferation assays showed a significant reduction in SF for combined photon chemoradiation versus photons only. The linear-quadratic fits of combined therapy with carbon ion dose of 0 to 2.5 Gy led to reductions of mean 15% in SF. The LD 50 (lethal radiation dose required to reduce cell survival by 50%) for carbon ions only was 0.7 Gy and for carbon ions with gemcitabine 0.6 Gy. The LD 50 for photons (with gemcitabine) was 2.8 Gy (2.0 Gy) and for carbon ions (with gemcitabine) 0.7 Gy (0.6 Gy), resulting in a relative biological effectiveness at 10% cell survival (RBE10) of 3.0 (2.7). Carbon ions and photons reduced S phase and increased G2/M phase cell distribution. Isolated treatment with gemcitabine as well as combination with photons led to prolonged S phase transit, whereas combined treatment with carbon ions led to early accumulation in G2/M phase. A significant increase in the sub-G1 population as a hint of relevant number of apoptotic cells was not observed. Conclusion: Gemcitabine showed radiosensitizing effects in combination with photons. The combination of gemcitabine and carbon ions had independent additive effects. Carbon ions only had a RBE10 of 3.0, compared to photons only. The combination of gemcitabine, photon, and carbon ions in patients with MEC seems promising and warrants further investigation.