Adolescence is a time of profound changes in the structural wiring of the brain and maturation of large-scale functional interactions. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14-25 years (n = 199). Core to our work was an advanced model of cortical wiring that incorporates multimodal MRI features of (i) cortico-cortical proximity, (ii) microstructural similarity, and (iii) diffusion tractography. Longitudinal analyses assessing age-related changes in cortical wiring during adolescence identified increases in cortical wiring within attention and default-mode networks, as well as between transmodal and attention, and sensory and limbic networks, indicative of a continued differentiation of cortico-cortical structural networks. Cortical wiring changes were statistically independent from age-related cortical thinning seen in the same subjects. Conversely, resting-state functional MRI analysis in the same subjects indicated an increasing segregation of sensory and transmodal systems during adolescence, with age-related reductions in their functional connectivity alongside with an increase in structural wiring distance. Our findings provide new insights into adolescent brain network development, illustrating how the maturation of structural wiring interacts with the development of macroscale network function.