Microbial alterations within the gut microbiome appear to be a common feature of individuals with Parkinson′s disease (PD), providing further evidence for the role of the gut-brain axis in PD development. As a major site of contact with the environment, questions have emerged surrounding the cause and effect of alterations to the gut microbiome by environmental contaminants associated with PD risk, such as pesticides, metals, and organic solvents. Recent data from our lab shows that ingestion of the industrial byproduct and environmental pollutant trichloroethylene (TCE) induces key Parkinsonian pathology within aged rats, including the degeneration of dopaminergic neurons, α-synuclein accumulation, neuroinflammation, and endolysosomal deficits. As TCE is the most common organic contaminant within drinking water, we postulated that ingestion of TCE associated with PD-related neurodegeneration may alter the gut microbiome to a similar extent as observed in persons with PD. To assess this, we collected fecal samples from adult rats treated with 200 mg/kg TCE over 6 weeks via oral gavage and analyzed the gut microbiome via whole genome shotgun sequencing. Our results showed changes in gut microorganisms reflective of the microbial signatures observed in individuals with idiopathic PD, such as decreased abundance of short-chain fatty acid producing Blautia and elevated lactic-acid producing Bifidobacteria, as well as genera who contain species previously reported as opportunistic pathogens such as Clostridium. From these experimental data, we postulate that TCE exposure within contaminated drinking water could induce alterations of the gut microbiome that contributes to chronic disease risk, including idiopathic PD.