S‐type pyocins are bacteriocins produced by Pseudomonas aeruginosa isolates to antagonize or kill other strains of the same species. They have a modular organization comprising a receptor‐binding domain recognizing a surface constituent of the target bacterium, a domain for translocation through the periplasm, and a killing or toxic domain with DNase, tRNase, or pore‐forming activity. Pyocins S2, S3, S4, and S5 recognize TonB‐dependent ferri‐siderophore receptors in the outer membrane. We here describe a new nuclease bacteriocin, pyocin S6, encoded in the genome of a P. aeruginosa cystic fibrosis (CF) clinical isolate, CF_PA39. Similarly to pyocins S1 and S2, the S6 toxin–immunity gene tandem was recruited to the genomic region encoding exotoxin A. The pyocin S6 receptor‐binding and translocation domains are identical to those of pyocin S1, whereas the killing domain is similar to the 16S ribonuclease domain of Escherichia coli colicin E3. The cytotoxic activity was abolished in pyocin S6 forms with a mutation in the colicin E3‐equivalent catalytic motif. The CF_PA39 S6 immunity gene displays a higher expression level than the gene encoding the killing protein, the latter being only detected when bacteria are grown under iron‐limiting conditions. In the S1‐pyocinogenic strain P. aeruginosa
ATCC 25324 and pyocin S2 producer P. aeruginosa
PAO1, a remnant of the pyocin S6 killing domain and an intact S6‐type immunity gene are located downstream of their respective pyocin operons. Strain PAO1 is insensitive for pyocin S6, and its S6‐type immunity gene provides protection against pyocin S6 activity. Purified pyocin S6 inhibits one‐fifth of 110 P. aeruginosa
CF clinical isolates tested, showing clearer inhibition zones when the target cells are grown under iron limitation. In this panel, about half of the CF clinical isolates were found to host the S6 genes. The pyocin S6 locus is also present in the genome of some non‐CF clinical isolates.