The successful intracellular delivery of biologically active proteins and peptides plays an important role for therapeutic applications. Indeed, protein/peptide delivery could overcome some problems of gene therapy, for example, controlling the expression levels and the integration of transgene into the host cell genome. Thus, protein/peptide drug delivery showed a promising and safe approach for treatment of cancer and infectious diseases. Due to the unique physical and chemical properties of proteins, their production (e.g., isolation, purification & formulation) and delivery represented significant challenges in pharmaceutical studies. Modification in the structural moieties of these protein/peptide drugs could improve their solubility, stability, crystallinity, lipophilicity, enzymatic susceptibility and targetability, and subsequently, therapies and cures against various diseases. Using the structural modification of protein/peptide, their delivery provided overall higher success rates including high specificity, high activity, bioreactivity and safety. Recently, biotechnological and pharmaceutical companies have tried to find novel techniques for the modifications and improve delivery systems/carriers. However, each carrier has its own benefits and drawbacks, and an appropriate carrier is often established by the physicochemical properties of protein or peptide, the ideal route of injection, and clinical characteristics of therapy. In this review, an attempt was made to give an overview on the chemical carriers for proteins and peptides as well as the recent advances in this field.