In the era of social media, a large volume of data is generated by applications such as the industrial internet of things, IoT, Facebook, Twitter, and individual usage. Artificial intelligence and big data tools plays an important role in devising mechanisms for handling this vast volume of data as per the required usage of data to form important information from this unstructured data. When the data is publicly available on the internet and social media, it is imperative to treat the data carefully to respect the sentiments of the individuals. In this paper, the authors have attempted to solve three problems for treating the data using AI and data science tools, weighted statistical methods, and explainability of sarcastic comments. The first objective of this research study is sarcasm detection, and the next objective is to apply it to a domain-specific political Reddit dataset. Moreover, the last is to predict sarcastic words using counterfactual explainability. The textare extracted from the self-annotated Reddit corpus dataset containing 533 million comments written in English language, where 1.3 million comments are sarcastic. The sarcasm detection based model uses a weighted average approach and deep learning models to extract information and provide the required output in terms of content classification. Identifying sarcasm from a sentence is very challenging when the sentence has content that flips the polarity of positive sentiment into negative sentiment. This cumbersome task can be achieved with artificial intelligenceand machine learningalgorithms that train the machine and assist in classifying the required content from the sentences to keep the social media posts acceptable to society. There should be a mechanism to determine the extent to which the model's prediction could be relied upon. Therefore, the explination of the prediction is essential. We studied the methods and developed a model for detecting sarcasm and explaining the prediction. Therefore, the sarcasm detection model with explainability assists in identifying the sarcasmfrom the reddit post and its sentiment score to classify given textcorrectly. The F1-score of 75.75% for sarcasm and 80% for the explainability model proves the robustness of the proposed model.