Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The innervation of normal, mature mammalian skin is widely thought to be constant. However, the extensive skin remodeling accompanying the transformation of hair follicles from resting stage through growth and regression back to resting (telogen-anagen-catagen-telogen) may also be associated with alteration of skin innervation. We, therefore, have investigated the innervation of the back skin of adolescent C57BL/6 mice at various stages of the depilation-induced hair cycle. By using antisera against neuronal (protein gene product 9.5 [PGP 9.5], neurofilament 150) and Schwann cell (S-100, myelin basic protein) markers, as well as against neural cell adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43), we found a dramatic increase of single fibers within the dermis and subcutis during early anagen. This was paralleled by an increase in the number of anastomoses between the cutaneous nerve plexuses and by distinct changes in the nerve fiber supply of anagen vs. telogen hair follicles. The follicular isthmus, including the bulge, the seat of epithelial follicle stem cells, was found to be the most densely innervated skin area. Here, a defined subpopulation of nerve fibers increased in number during anagen and declined during catagen, accompanied by dynamic alterations in the expression of NCAM and GAP-43. Thus, our study provides evidence for a surprising degree of plasticity of murine skin innervation. Because hair cycle-associated tissue remodeling evidently is associated with tightly regulated sprouting and regression of nerve fibers, hair cycle-dependent alterations in murine skin and hair follicle innervation offer an intriguing model for studying the controlled rearrangement of neuronal networks in peripheral tissues under physiological conditions.
The innervation of normal, mature mammalian skin is widely thought to be constant. However, the extensive skin remodeling accompanying the transformation of hair follicles from resting stage through growth and regression back to resting (telogen-anagen-catagen-telogen) may also be associated with alteration of skin innervation. We, therefore, have investigated the innervation of the back skin of adolescent C57BL/6 mice at various stages of the depilation-induced hair cycle. By using antisera against neuronal (protein gene product 9.5 [PGP 9.5], neurofilament 150) and Schwann cell (S-100, myelin basic protein) markers, as well as against neural cell adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43), we found a dramatic increase of single fibers within the dermis and subcutis during early anagen. This was paralleled by an increase in the number of anastomoses between the cutaneous nerve plexuses and by distinct changes in the nerve fiber supply of anagen vs. telogen hair follicles. The follicular isthmus, including the bulge, the seat of epithelial follicle stem cells, was found to be the most densely innervated skin area. Here, a defined subpopulation of nerve fibers increased in number during anagen and declined during catagen, accompanied by dynamic alterations in the expression of NCAM and GAP-43. Thus, our study provides evidence for a surprising degree of plasticity of murine skin innervation. Because hair cycle-associated tissue remodeling evidently is associated with tightly regulated sprouting and regression of nerve fibers, hair cycle-dependent alterations in murine skin and hair follicle innervation offer an intriguing model for studying the controlled rearrangement of neuronal networks in peripheral tissues under physiological conditions.
The longitudinal lanceolate endings are ubiquitous sensory terminals in the sinus and nonsinus hairs of mammals that form a palisade around the hair follicle. To analyze how the nerve endings detect hair movements, the present study re-examined their fine structure and relationships with surrounding connective tissue in rat vibrissae by using a combination of three methods: immunohistochemistry for S-100 protein, scanning electron microscopy of NaOH-macerated specimens, and transmission electron microscopy of serial sections. Observations showed the lanceolate endings to be represented by triplet units with a flattened axon terminal flanked on each side by a Schwann cell lamella, as reported previously. Two distinct parts were discriminated in the lanceolate ending: a principal portion in which the axon terminal protruded numerous fine fingers from between the Schwann cell coverings, and an apical cone that enclosed a large axon finger in an attenuated Schwann sheath. Long foot processes of Schwann cells fanned out distally from each apical cone. The principal portions of the lanceolate endings were firmly linked to the surrounding connective tissue by the narrow edges equipped with axon fingers, suggesting their continuous deformation by sustained hair deflections. In contrast, the apical cones were freely suspended in an amorphous matrix with only the end feet of the Schwann cell projections attached to rigid tissue elements. This part of the ending was proposed as a possible transducer site to generate rapidly adapting receptor potentials, both retreating and overshooting during the acceleration and deceleration phases of a given vibrissal movement.
We employed immunohistochemistry of growth-associated protein 43 (GAP-43) to trace the early development of gustatory nerves and ␣-gustducin to demonstrate mature taste buds in the rat nasoincisor papilla (NP). The sequential changes of gustatory structures revealed eight characteristic stages. One, at embryonic day 16 (E16), GAP-43-immunoreactive (IR) nerve fibers were observed in close relation with presumptive taste buds in the lateral apical epithelium on each side of NP; meanwhile, no immunoreactivity could be observed in the papillary epithelium. Two, at E17, fine GAP-43-IR nerve fibers first invaded the apical epithelium of the papilla. Three, at E19, GAP-43-IR nerve fibers were extensive in apical epithelium and colonized in immature taste buds. Four, at E20, GAP-43-IR nerve fibers were first observed in ductal epithelium (lining the medial wall of nasoincisor ducts). Five, at postnatal day 1 (P1), immunoreactive nerve fibers first coincided with immature taste buds in the ductal epithelium. Six, at P3, ␣-gustducin-IR cells identical for mature taste buds were simultaneously demonstrated in both apical and ductal epithelium. Seven, at P14, progressive taste bud proliferation and maturation as well as neural invasion were demonstrated in all regions of the epithelium. Eight, during advanced stage in adult animals, extensive innervation was traced especially in close relation with taste buds. The sequential topographic patterns of NP gustatory structures seem very specific as compared to those in other locations of mammalian gustatory system. The present study reveals that gustatory nerves preceded the development of taste buds. However Key words: innervation; gustatory epithelium; neural inductionMammalian taste buds are distributed throughout the oropharyngeal epithelium most likely within papillary structures such as vallate, fungiform, foliate, and nasoincisor papillae, while they are diffusely scattered among the soft palatal and laryngeal epithelium (Miller, 1977;Miller and Smith, 1984;Belecky and Smith, 1990). Previous publications revealed that the temporal and spatial patterns of taste buds differ according to their locations and their source of innervation (Belecky and Smith, 1990). Briefly, the fungiform and soft palate taste buds that are innervated by the seventh cranial nerve (facial nerve) develop mostly during prenatal life, while for those innervated by the ninth (glossopharyngeal nerve) cranial nerve such as vallate and foliate or the tenth cranial nerve (vagus nerve), laryngeal taste buds appear at later stages of development. In a previous report, we found the taste
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.