Abstract. In recent years, the basic electrospinning setup has undergone many modifications carried out to enhance the quality and improve the functionality of the resulting nanofibers. Being one of these modifications, coaxial electrospinning has attracted great attention. It enables to use different materials in nanofiber production and produce multi-layered and functional nanofibers in one step. In this study, TiO2 has been added to the shell layer of coaxial nanofibers to develop functional nanofibers which may be used in water treatment applications. The coaxial nanofibers containing TiO2 in the shell layer are compared to uniaxial nanofibers containing TiO2 in bulk fiber structure, regarding their morphology and photocatalytic activity. Uniform uniaxial and coaxial nanofibers with TiO2 were obtained. The average nanofiber diameter of coaxial nanofibers were higher. Coaxial nanofibers, which contained lower amount of TiO2, displayed similar performance to uniaxial nanofibers with TiO2 in terms of photocatalytic degradation ability against isoproturon.