This paper proposes a new min-sum algorithm for lowdensity parity-check decoding. In this paper, we first define the negative and positive effects of the received signal-to-noise ratio (SNR) in the min-sum decoding algorithm. To improve the performance of error correction by considering the negative and positive effects of the received SNR, the proposed algorithm applies adaptive scaling factors not only to extrinsic information but also to a received log-likelihood ratio. We also propose a combined variable and check node architecture to realize the proposed algorithm with low complexity. The simulation results show that the proposed algorithm achieves up to 0.4 dB coding gain with low complexity compared to existing min-sum-based algorithms.