The ecology of the component species of an adaptive radiation is likely to be influenced by the form of the founding ancestor to the radiation, its timing, and rates of speciation and extinction. These historical features complement environmental selection pressures. They imply that, if the history of the species' radiations are very different, ecological communities are unlikely to be completely convergent even when placed in identical environments. We compare the adaptive radiation of the Dendroica warblers of North America with that of the Phylloscopus warblers of Asia. We consider the ecology of the species in two localities where species' diversity is very high (New Hampshire, U.S.A., and Kashmir, India, respectively) and contrast the history of the two radiations on the basis of a molecular (mitochondrial cytochrome b) phylogeny. By comparison with the Phylloscopus, the Dendroica are on average larger and morphologically more similar to one another. Although there is some similarity between the Dendroica and Phylloscopus communities, they differ in foraging behavior and in associations of morphology with ecological variables. The Dendroica likely reflect an early Pliocene radiation and are two to four times younger than the Phylloscopus. They probably had a colorful sexually dichromatic ancestor, implicating sexual selection in the production of the many ecologically similar species. The Phylloscopus are much older and probably had a drab, monomorphic ancestor. Given the difference in ages of the two radiations, it is plausible that the close species' packing of the Dendroica warblers is a transient phenomenon. If this is the case, community structure evolves on the timescales of millions of years. Differences in ancestry and timing of the species' radiations can be * E-mail: tprice@ucsd.edu. related to the different biogeography of the two regions. This implies that the historical imprint on adaptive radiations could be predicted on the basis of the attributes of ancestors and biogeographical context.