Background: The Clinical Dementia Rating (CDR) has been widely used to assess dementia severity, but it is limited in predicting dementia progression, thus unable to advise preventive measures to those who are at high risk. Objective: Predicted age difference (PAD) was proposed to predict CDR change. Methods: All diffusion magnetic resonance imaging and CDR scores were obtained from the OASIS-3 databank. A brain age model was trained by a machine learning algorithm using the imaging data of 258 cognitively healthy adults. Two diffusion indices, i.e., mean diffusivity and fractional anisotropy, over the whole brain white matter were extracted to serve as the features for model training. The validated brain age model was applied to a longitudinal cohort of 217 participants who had CDR = 0 (CDR0), 0.5 (CDR0.5), and 1 (CDR1) at baseline. Participants were grouped according to different baseline CDR and their subsequent CDR in approximately 2 years of follow-up. PAD was compared between different groups with multiple comparison correction. Results: PADs were significantly different among participants with different baseline CDRs. PAD in participants with relatively stable CDR0.5 was significantly smaller than PAD in participants who had CDR0.5 at baseline but converted to CDR1 in the follow-up. Similarly, participants with relatively stable CDR0 had significantly smaller PAD than those who were CDR0 at baseline but converted to CDR0.5 in the follow-up. Conclusion: Our results imply that PAD might be a potential imaging biomarker for predicting CDR outcomes in patients with CDR0 or CDR0.5.