Aims Sedation induced by antihistamines is widely recognized to be caused by their penetration through the blood±brain-barrier and the consequent occupation of brain histamine H 1 -receptors. We previously studied the mechanism of sedation caused by antihistamines using positron emission tomography (PET). Recently, we revealed the nonsedative characteristic of ebastine, a second-generation antihistamine, with cognitive performance tests. In the present study, H 1 -receptor occupation by ebastine was examined in the human brain using PET. Methods Ebastine 10 mg and (+)-chlorpheniramine 2 or 6 mg were orally given to healthy male volunteers. PET scans with [11 C]-doxepin, a potent H 1 -receptor antagonist, were conducted near t max of respective drugs. Other volunteers in the control group also received PET scans. The binding potential of doxepin (BP=Bmax/ K d ) for available brain H 1 -receptors was imaged on a voxel-by-voxel basis through graphical analysis. By setting regions of interest, the H 1 -receptor occupancy of drugs was calculated in several H 1 -receptor rich regions. Results Brain distribution of radioactivity after ebastine treatment was similar to that without any drugs. However, after the oral administration of 2 mg (+)-chlorpheniramine, the level was lower than after ebastine and nondrug treatments. Graphical analysis followed by statistical parametric mapping (SPM96) revealed that H 1 -receptor rich regions such as cortices, cingulate gyrus and thalamus were regions where the BPs after ebastine were signi®cantly higher than after (+)-chlorpheniramine (2 mg). H 1 -receptor occupancies in cortex were approximately 10% by ebastine and i50% by either dose of (+)-chlorpheniramine (95% con®dence interval for difference in the mean receptor occupancies: 27%, 54% for 2 mg and 35%, 62% for 6 mg vs ebastine, respectively). Receptor occupancies increased with increasing plasma concentration of (+)-chlorpheniramine, but not with concentration of carebastine, an active metabolite of ebastine. Conclusions Ebastine (10 mg orally) causes brain histamine H 1 -receptor occupation of approximately 10%, consistent with its lower incidence of sedative effect, whereas (+)-chlorpheniramine occupied about 50% of brain H 1 -receptors even at a low but sedative dose of 2 mg; occupancy of (+)-chlorpheniramine was correlated with plasma (+)-chlorpheniramine concentration.