dCytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYP mouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations.T he 8-aminoquinoline class of antimalarial compounds is the only molecular scaffold with proven efficacy against relapsing strains of malaria (1-5). Currently, the only FDA-approved drug from this class that is available for clinical use is primaquine. Primaquine has been utilized for over 6 decades in treating malaria (6). Despite the long history of primaquine therapy for malaria treatment, primaquine has several disadvantages, including the hemolytic toxicity associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency; its relatively short elimination half-life in humans, which requires daily administration; and the potential requirement for cytochrome P450 (CYP) 2D6-mediated activation for radical curative activity (7-11). The 8-aminoquinoline molecule tafenoquine, currently under late-stage clinical development, has a significantly longer elimination half-life than primaquine (12-16) and has single-dose radical curative activity in humans (3). Tafenoquine is also being developed as a chemoprophylactic agent and has demonstrated efficacy against Plasmodium vivax and Plasmodium falciparum (17)(18)(19)(20)(21). Despite the pharmacological advantages of tafenoquine over primaquine, both molecules seem to have the same pharmacogenomic liability of CYP 2D6-mediated activation for liver-stage antimalarial activity (7,10,22,23) and are not free of hemolytic liability in G6PD def...