In the present study, we have analyzed the direct effects of cytokines, which mediate the acute-phase response in liver, on connexin expression and gap-junctional intercellular communication in immortalized MHSV12 mouse hepatocytes. When these cells were stimulated for 24 h with interleukin 1 and interleukin 6, the amount of connexin26 (Cx26) mRNA increased together with beta-fibrinogen mRNA, as expected for this positive acute-phase gene. In contrast, connexin32 (Cx32) mRNA expression was not affected under these conditions. Indirect immunfluorescence revealed a drastic decrease in Cx32 signals, whereas slightly more Cx26 signals were found. Stronger stimulation with interleukin 1 and tumor necrosis factor alpha gave a dose-dependent increase in steady state levels of Cx26 and beta-fibrinogen mRNA, but no further change in Cx32 mRNA level was seen. However, when Cx32 protein was analyzed on immunoblots, we found a 5-fold decrease in expression even at low cytokine doses that did not affect Cx32 mRNA expression. Under these conditions, cell to cell transfer of Lucifer yellow, microinjected into immortalized hepatocytes, was decreased by 70%, suggesting that intercellular communication through Cx32 channels was partially inhibited earlier than other genetic alterations characteristic of the acute-phase response. Thus, the major hepatic gap junction protein was largely downregulated at the beginning of the experimental inflammatory reaction, but about 30% of gap-junctional intercellular communication was maintained. This suggests that, during the acute-phase response, the second hepatic Cx26 protein may compensate in part for the downregulation of the Cx32 protein.