Effects of treatment with a single intraperitoneal injection of cadmium (Cd) on oxidative energy metabolism and lipid/phospholipid profiles of rat liver mitochondria were examined at the end of 1 week and 1 month. Following Cd treatment the body weight increased only in the 1 month group, whereas the liver weight increased in both groups. State 3 and 4 respiration rates in general decreased significantly, with the maximum effect being seen with succinate. The 1 week Cd group showed decreased respiratory activity with glutamate, pyruvate + malate, and succinate as the substrates. In the 1 month Cd-treated group respiration rates recovered with glutamate and pyruvate + malate but not with succinate. All cytochrome contents decreased in the 1 week Cd-treated group but recovered in the 1 month group. ATPase activity registered an increase in both Cd-treated groups. Dehydrogenase activities increased in the 1 week group but decreased in the 1 month Cd-treated group. The mitochondrial cholesterol content increased in the 1 week Cd-treated group. In the 1 week Cd-treated group the lysophospholipid (Lyso), sphingomyelin (SPM), and diphosphatidylglycerol (DPG) components increased. By contrast, the phosphatidylethanolamine (PE) component decreased. In the 1 month Cd-treated group the phosphatidylinositol, phosphatidylserine, and DPG components increased, whereas the Lyso, SPM, and phosphatidylcholine components decreased. The results demonstrate that single-dose Cd treatment can have adverse effects on liver mitochondrial oxidative energy metabolism and lipid/phosphopholipid profiles, which in turn can affect membrane structure-function relationships.