Growth factors (GF) are important in several stages of the pathogenesis of age-related macular disease (AMD). In choroidal neovascularization (CNV) in exudative AMD, the GF involved are similar to those involved in wound healing of the skin. Like granulation tissue of skin, CNV is characterized by clotting, inflammation, angiogenesis and fibrosis, and like in skin wounds, members of the VEGF, angiopoietin, PDGF and TGF-beta families of GF are expressed. However, several of these GF may also serve physiological functions in the normal eye, where the retinal pigment epithelium (RPE) employs them to provide trophic support to the neuroretina and choriocapillaris, in addition to maintaining an anti-angiogenic state. Derangement of these physiological functions may underlie the initiation of CNV in AMD. Basolateral secretion of VEGF-A by the RPE maintains the choriocapillaris, and is enhanced by hypoxia. Age-related changes in Bruch's membrane lead to impairment of this trophic function and choriocapillaris atrophy, as well as to decreased diffusion of oxygen towards the neuroretina. The resulting outer retina hypoxia may be an important driving force of CNV formation, by stimulating VEGF overexpression by the RPE, in addition to the effects of increased oxidative stress and low-grade inflammation. RPE senescence and hypoxia may also decrease expression of angiogenesis inhibitors such as PEDF, further shifting the balance to a pro-angiogenic state in the aging eye.