Background: Immunosenescence biomarkers and peripheral blood parameters are evaluated separately as possible predictive markers of immunotherapy. Here, we illustrate the use of a causal inference model to identify predictive biomarkers of CIMAvaxEGF success in the treatment of Non-Small Cell Lung Cancer Patients. Methods: Data from a controlled clinical trial evaluating the effect of CIMAvax-EGF were analyzed retrospectively, following a causal inference approach. Pre-treatment potential predictive biomarkers included basal serum EGF concentration, peripheral blood parameters and immunosenescence biomarkers. The proportion of CD8 + CD28-T cells, CD4+ and CD8+ T cells, CD4/CD8 ratio and CD19+ B cells. The 33 patients with complete information were included. The predictive causal information (PCI) was calculated for all possible models. The model with a minimum number of predictors, but with high prediction accuracy (PCI > 0.7) was selected. Good, rare and poor responder patients were identified using the predictive probability of treatment success. Results: The mean of PCI increased from 0.486, when only one predictor is considered, to 0.98 using the multivariate approach with all predictors. The model considering the proportion of CD4+ T cell, basal Epidermal Growth Factor (EGF) concentration, neutrophil to lymphocyte ratio, Monocytes, and Neutrophils as predictors were selected (PCI > 0.74). Patients predicted as good responders according to the pre-treatment biomarkers values treated with CIMAvax-EGF had a significant higher observed survival compared with the control group (p = 0.03). No difference was observed for bad responders. Conclusions: Peripheral blood parameters and immunosenescence biomarkers together with basal EGF concentration in serum resulted in good predictors of the CIMAvax-EGF success in advanced NSCLC. Future research should explore molecular and genetic profile as biomarkers for CIMAvax-EGF and it combination with immune-checkpoint inhibitors. The study illustrates the application of a new methodology, based on causal inference, to evaluate multivariate pre-treatment predictors. The multivariate approach allows realistic predictions of the clinical benefit of patients and should be introduced in daily clinical practice.