Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lygus pratensis (Linnaeus) is an important agricultural pest with a strong ability to move and spread between hosts. However, L. pratensis’ flight potential and factors affecting its flight ability are unclear. We used the insect flight information system (flight mill) to determine the effects of temperature, humidity, age, sex, and mating on L. pratensis’ flight ability in an artificial climate chamber. Temperature and relative humidity significantly affected L. pratensis’ flight ability; however, low and high temperature, as well as low humidity, were unsuitable, and the optimal flight environment was 20–28 °C and 60–75% RH. Lygus pratensis’ flying ability initially increased and then decreased with age and was highest at 10 days old (flight rate: 71.43%; total flight distance: 18.63 ± 1.89 km; total flight time: 6.84 ± 0.60 h). At 15 days old, flight speed was the highest (3.36 ± 0.18 km h−1). Sex had little effect on L. pratensis’ flying ability; it was marginally stronger for females than males, but the difference was insignificant. Mating increased female flying ability but decreased that of males, but the difference was insignificant. Overall, L. pratensis had strong flight dispersal ability, was largely unaffected by sex and mating, and optimal flight conditions were mild temperature and humidity. This knowledge provides a scientific basis for L. pratensis outbreak prediction, prevention, and control.
Lygus pratensis (Linnaeus) is an important agricultural pest with a strong ability to move and spread between hosts. However, L. pratensis’ flight potential and factors affecting its flight ability are unclear. We used the insect flight information system (flight mill) to determine the effects of temperature, humidity, age, sex, and mating on L. pratensis’ flight ability in an artificial climate chamber. Temperature and relative humidity significantly affected L. pratensis’ flight ability; however, low and high temperature, as well as low humidity, were unsuitable, and the optimal flight environment was 20–28 °C and 60–75% RH. Lygus pratensis’ flying ability initially increased and then decreased with age and was highest at 10 days old (flight rate: 71.43%; total flight distance: 18.63 ± 1.89 km; total flight time: 6.84 ± 0.60 h). At 15 days old, flight speed was the highest (3.36 ± 0.18 km h−1). Sex had little effect on L. pratensis’ flying ability; it was marginally stronger for females than males, but the difference was insignificant. Mating increased female flying ability but decreased that of males, but the difference was insignificant. Overall, L. pratensis had strong flight dispersal ability, was largely unaffected by sex and mating, and optimal flight conditions were mild temperature and humidity. This knowledge provides a scientific basis for L. pratensis outbreak prediction, prevention, and control.
Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species Grablovirus vitis, genus Grablovirus, family Geminiviridae), the causal agent of red blotch disease, is transmitted by Spissistilus festinus (Hemiptera: Membracidae) in a circulative, non-propagative mode. To gain new insight into GRBV-S. festinus interactions, we delved into vertical transmission and documented a lack of transovarial transmission. In addition, we investigated S. festinus sex differences in the horizontal transmission of GRBV by creating small arenas with 30 detached trifoliates of common snap bean, an experimental host of GRBV, and a preferred feeding host of S. festinus. Tracking the movement of viruliferous males, females, or a combination of the two sexes over two weeks in replicated experiments demonstrated that male S. festinus dispersed more than females with specimens of both sexes predominantly grouping together on trifoliates spatially surrounding the trifoliate onto which they were released. These behaviors resulted in a greater rate of GRBV transmission by S. festinus males (17%, 20 of 120) than females (4%, 5 of 120) or mixed-sex cohorts (9%, 17 of 180). In arenas with aviruliferous S. festinus and one (single) or four (hotspot) GRBV-infected trifoliates out of 30 total trifoliates, a higher GRBV transmission rate by males was confirmed in both single infection (50%, 30 of 60) and hotspot infection (83%, 50 of 60) arenas than by females in single infection (35%, 21 of 60) and hotspot infection (67%, 40 of 60) arenas. These findings highlighted sex-associated differences in the transmission of GRBV by S. festinus and a positive correlation between the initial virus prevalence and the rate of transmission. Finally, the secondary spread of GRBV resulted primarily from S. festinus dispersal by walking or jumping. Together, these unique GRBV transmission features support the need to characterize dispersal behaviors of S. festinus in vineyard ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.