The plasma membrane of eukaryotic cells is coated with carbohydrates. By virtue of their extracellular position and recognizable chemical features, cell surface glycans mediate many receptor-ligand interactions. Recently, mammalian extracellular hydrolytic enzymes have been shown to modify the structure of cell surface glycans and consequently, alter their binding properties. These cell surface glycan remodeling events can cause rapid changes in critical signal transduction phenomena. This review highlights recent studies on the roles of eukaryotic extracellular sialidases, sulfatases, and a deacetylase in regulation of intracellular signaling. We also describe possible therapies that target extracellular glycan remodeling processes and discuss the potential for new discoveries in this area.The glycocalyx stands between extracellular signals and intracellular responses. But the glycoproteins, glycolipids and proteoglycans that comprise the glycocalyx are not simply a barrier; rather, they serve essential roles in the transduction of signals from the outside to the inside of cells. Indeed, most cell surface receptors are glycosylated and many specifically recognize glycans that are attached to their ligands. Cell surface and extracellular glycans have been demonstrated to play critical roles in the control and modulation of a variety of signal transduction pathways (1-4). For example, in embryonic development, signaling through the Notch receptor requires that the receptor be modified with O-fucose glycans (5). If these glycans are absent, gestational death occurs. In the adult nervous system, the myelin-associated glycoprotein (MAG) binds to glycoproteins and glycolipids on axons, forming signaling complexes that inhibit axonal outgrowth (6). And in the immune system, specific cell surface glycans are essential components of the signal transduction pathways that lead to processes such as B-cell receptor activation and T-cell apoptosis (7,8). Glycosylation also regulates intracellular signal transduction events: for example, the addition of O-linked Nacetylglucosamine (O-GlcNAc) to histone lysine methyl transferase MLL5 activates this enzyme, causing it to methylate histone H3 and thereby leading to cell lineage determination (9).As more signaling roles for glycans are identified, an essential task is to understand the mechanisms that regulate the glycosylation state of a cell or molecule (Figure 1). Most glycans are assembled in the endoplasmic reticulum (ER) and Golgi through the coordinate action of many membrane-associated glycosyltransferases and other glycan-modifying enzymes, such as sulfotransferases and epimerases. ER-and Golgi-resident glycosyltransferases require nucleotide-sugar donors, such as uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), guanidine diphosphate-fucose (GDP-fucose), and cytidine monophosphate-sialic acids (CMPsialic acids), that are synthesized in the cytoplasm or nucleus. Once assembled in the secretory *To whom correspondence should be addressed (Jennifer.Kohler@UTSou...