When the central nervous system (CNS) is the primary affected site in an initial attack of Behçet’s disease (BD), the differential diagnosis is particularly challenging. Some cases remain unclassified or qualified as probable neuro-Behçet’s disease (NBD). Several cytokines are involved in the immunopathogenesis of this disease; however, studies establishing the differential cytokine pattern between probable and definite NBD are scarce. Twenty-eight parenchymal NBD patients, diagnosed according to the International Consensus Recommendation (ICR) criteria and classified into definite (D-NBD; n = 17) and probable (P-NBD; n = 11), were sampled at their first neurological symptoms, and compared with healthy control subjects (n = 20). Oligoclonal bands (OCB) of IgG were detected by isoelectric focusing on agarose, and immunoblotting of matched serum and cerebrospinal fluid (CSF) sample pairs. T cell cytokines (INF-γ, IL-4, IL-17, and IL-10) and transcription factors related to Th1, Th2, Th17, and T regulatory populations (respectively T-bet, GATA-3, ROR-γt, and Foxp3) were studied by quantitative RT-PCR in peripheral blood mononuclear cells (PBMCs) and CSF cells. Inflammatory cytokines such as IL-6, TNF-α, and IL-1β were also analyzed. CSF OCB pattern 2 was present in only 1 out of 28 neuro-Behçet’s patients who belonged to the P-NBD group. Two D-NBD patients had OCB in CSF showing pattern 4. In the D-NBD CSF samples, IL-17 and IL-10 expressions were significantly elevated compared to P-NBD. Moreover, D-NBD patients had increased levels of T-bet/GATA-3 and ROR-γt/Foxp3 ratios compared to P-NBD. Furthermore, a significant increase of CSF IL-6 in D-NBD, compared to P-NBD and the controls, was found. In addition to the increased IL-6 level, the data obtained suggest the existence in D-NBD patients of a significantly disrupted balance between Th17 effector and T regulatory cells, as reflected by the enhanced ROR-γt/Foxp3 ratio. This could be considered as an additional criterion for definite neuro-Behçet’s disease.