“…where F is rational in w and dw/dz and locally analytic in z and solved the equations in terms of the first, second and fourth Painlevé transcendents, elliptic functions, or quadratures. For various results on classifying classes of second-order ordinary differential equations, including Painlevé equations, see Babich and Bordag [12], Bagderina [13,15,16,17,18], Bagderina and Tarkhanov [19], Berth and Czichowski [22], Hietarinta and Dryuma [78], Kamran, Lamb and Shadwick [88], Kartak [90,91,92,93], Kossovskiy and Zaitsev [97], Milson and Valiquette [106], Valiquette [139] and Yumaguzhin [145]. Most of these studies are concerned with the invariance of second-order ordinary differential equations of the form…”