The physical model of the radiance field is similar in some aspects to the elementary particle transport theory under the assumptions of the classical mechanics. Disregarding the differences in the used nomenclatures, it can be shown that the transport equations for the radiance field are identical to those for the particle flux density. Since the end of the 19th century, both theories have been developing in parallel, thereby enriching each other. In other words, a breakthrough, which has been made in one theory, readily contributes to the significant progress in another one. Nowadays the accuracy achieved in the experiments with particles is close to the limit, which allows validating the relationships derived within the light scattering theory. Besides, the experiments with particles are free from uncertainties in the scattering medium, which are typical for atmospheric remote sensing applications. In this paper, a new algorithm is described, which is derived by analogies between these theories. It is applied for calculating the electron flux elastically scattered by plane-parallel layers of a solid with the strongly forward peaked phase functions. The calculations are compared against the experimental angular distributions of electrons, which are elastically reflected by the two-layer solid samples.