2023
DOI: 10.1007/s11063-023-11216-1
|View full text |Cite
|
Sign up to set email alerts
|

Differential Neural Networks Prediction Using Slow and Fast Hybrid Learning: Application to Prognosis of Infectionsand Deaths of COVID-19 Dynamics

Abstract: This essay discusses a potential method for predicting the behavior of various physical processes and uses the COVID-19 outbreak to demonstrate its applicability. This study assumes that the current data set reflects the output of a dynamic system that is governed by a nonlinear ordinary differential equation. This dynamic system may be described by a Differential Neural Network (DNN) with time-varying weights matrix parameters. A new hybrid learning scheme based on the decomposition of the signal to be predic… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?