• 5 modern cultivars of wheat were investigated under fully open-air field conditions. • Significant O 3 effects were only found during the mid-grain filling stage.• The lower photosynthetic rates were mainly due to nonstomatal factors.• Antioxidative enzymes contributed to the differential response to E-O 3 among cultivars. from the initiation of tillering to final harvest. Pigments, gas exchange rates, chlorophyll a fluorescence, antioxidants contents, antioxidative enzyme activity and lipid oxidation were measured in three replicated plots throughout flag leaf development. Results showed that significant O 3 effects on most variables were only found during the mid-grain filling stage. Across five cultivars, E-O 3 significantly accelerated leaf senescence, as indicated by increased lipid oxidation as well as faster declines in pigment amounts and photosynthetic rates. The lower photosynthetic rates were mainly due to non-stomatal factors, e.g. lower maximum carboxylation capacity and electron transport rates. There were strong interactions between O 3 and cultivar in photosynthetic pigments, light-saturated photosynthesis rate and chlorophyll a fluorescence with O 3 -sensitive (Y19, Y2 and Y15) and O 3 -tolerant (J2, Y16) cultivars being clearly differentiated in their responses to E-O 3 . E-O 3 significantly influenced the antioxidative enzymes but not antioxidant contents.
G R A P H I C A L A B S T R A C T a b s t r a c t a r t i c l e i n f o
Contents lists available at ScienceDirectScience of the Total Environment j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / s c i t o t e n v cultivar were found in antioxidative enzymes, such as SOD and CAT, but not in stomatal conductance (g s ). Therefore, it can be concluded that antioxidative enzymes rather than g s or antioxidants are responsible for the differential responses to E-O 3 among cultivars. These findings provide important information for the development of accurate modeling O 3 effects on crops, especially with respect to the developmental stage when O 3 damage to photosynthesis becomes manifest.