Fetal growth is determined by a complex interplay of genetic, nutritional, environmental, and hormonal factors. Greater than expected fetal growth has been positively associated with the risk of the development of some cancers in childhood, particularly acute lymphoblastic leukemia, and the biological mechanisms underlying such associations are thought to involve insulin-like growth factors (IGFs). Circulating IGF levels are highly correlated with fetal growth, and IGFs are believed to play an important role in carcinogenesis; however, these two bodies of evidence have not been well integrated and, as a result, the potential underlying biological mechanisms linking the IGF system with the development of specific childhood cancers have not been elucidated. This review aims to draw together and summarize the literature linking the IGF system, rapidity of fetal growth, and risk of some specific childhood cancers; suggest explanations for some of the inconsistencies observed in previous studies of these associations; and propose an integrated framework for the putative involvement of the IGF system in the development of at least some childhood cancers. If the challenges involved in studying the complex IGF system can be overcome, this field presents an exciting opportunity to elucidate etiological pathways to childhood malignancies.