Docetaxel, a chemotherapeutic agent currently used for improving survival of prostate cancer patients, suffers from low therapeutic index. The objective of this study was to prepare a new docetaxel derivative conjugated to deslorelin, a luteinizing hormone-releasing hormone (LHRH) superagonist, and to determine whether it enhances docetaxel potency in vitro and in vivo. Because docetaxel is not amenable for conjugation with peptides, we introduced a -COOH group in docetaxel, forming docetaxel-hemiglutarate, and subsequently conjugated this to serine in deslorelin, forming deslorelin-docetaxel. Fouriertransform IR, 1 H-nuclear magnetic resonance, and liquid chromatography-mass spectrometry analyses confirmed deslorelin-docetaxel formation. Antiproliferative efficacy in LNCaP and PC-3 cell lines over 24, 48, and 72 hours exhibited the order deslorelin-docetaxel > docetaxel, whereas deslorelin alone had no effect, with deslorelindocetaxel potency being 15-fold greater than docetaxel at 72 h. Further, cells pretreated with antisense oligonucleotide against LHRH receptor exhibited decreased deslorelin-docetaxel efficacy, without any change in docetaxel efficacy. Thus, deslorelin-docetaxel efficacy is likely mediated via LHRH receptor. Cell cycle analysis showed that docetaxel treatment led to arrest in G 2 -M phase, whereas deslorelin-docetaxel treatment allowed greater progression to apoptosis in both cell lines, with deslorelin-docetaxel exerting 5-fold greater apoptosis compared with docetaxel in prostate cancer cell lines. Antitumor efficacy studies in PC-3 prostate xenograft-bearing mice indicated the efficacy order deslorelin-docetaxel > docetaxel ≫ deslorelin > PBS, with deslorelin-docetaxel exerting 5.5-fold greater tumor growth inhibition than docetaxel alone. Thus, deslorelin-docetaxel prepared in this study retains pharmacologic effects of both docetaxel and deslorelin while enhancing the antiproliferative, apoptotic, and antitumor efficacy of docetaxel by several folds in prostate cancer therapy.