To plan movements toward objects our brain must recognize whether retinal displacement is due to self-motion and/or to object-motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an eventrelated functional magnetic resonance imaging experiment, brain mapping techniques, and wide-field stimulation to study the responsivity of motion-sensitive areas to pure and combined self-and object-motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object-motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self-motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object-and self-motion were present.Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object-motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self-movements. We propose that these motion areas might be good candidates for the "flow parsing mechanism," that is the capability to extract object-motion information from retinal motion signals by subtracting out the optic flow components.
K E Y W O R D Sarea V6, brain mapping, flow parsing, fMRI, optic flow, wide-field