Ensuring reliability of data on thermal properties of wood-based panels is important for manufacturing processes, especially when it is recommended to shorten the cooling phase and stack the panels in hot conditions. Prediction of the heat transfer during cooling phase and normal or hot stacking based on accurate data is essentially important for attaining panels of required properties. The thermal properties are also required when designing houses, especially low-energy or passive ones. Therefore, a water calorimeter was adequately designed and constructed to ensure improvement in the accuracy of the specific heat measurements. The calorimeter was used to determine the specific heat. The attained accuracy estimated by the relative error was significantly increased, and the error values were less than 2 % for all types of the investigated particleboard and OSB. In case of low-density fiberboard (LDF), the maximum value of the relative error did not exceed 4 %. It was also shown that high accuracy required for the specific heat measurements was achieved for experiments in which high-mass samples were used, in contrast to measurements for such samples in traditional DSC systems. The results for the specific heat were within the range from 1420 to 1450 J/kg K for LDF and all types of particleboard. The effect of the investigated material density on the specific heat was not found. The only exception was in case of OSB for which the specific heat was ca. 1550 J/kg K, and it was approximately 100 J/kg K higher when compared to other panels.