“…Setting f (t, y, v) = f (1) (y), f (2) (v) , where f (1) (y) = (y (1) − α 0 ) 2 and f (2) (v) = v 2 for all (t, y, v) ∈ [t 0 , t 1 ] × ρB R 2 × Ω, y = (y (1) , y (2) ). Then, the functions f (1) and f (2) are strictly convex on convex subsets ρB R 2 and Ω, respectively. For all ẑ = (x, û), z = (x, ū) ∈ K(φ), ẑ = z, and for all λ ∈ (0, 1), we have…”