In Arabidopsis thaliana, biosynthesis of the essential thiol antioxidant, glutathione (GSH), is plastid-regulated, but many GSH functions, including heavy metal detoxification and plant defense activation, depend on cytosolic GSH. This finding suggests that plastid and cytosol thiol pools are closely integrated and we show that in Arabidopsis this integration requires a family of three plastid thiol transporters homologous to the Plasmodium falciparum chloroquine-resistance transporter, PfCRT. Arabidopsis mutants lacking these transporters are heavy metal-sensitive, GSH-deficient, and hypersensitive to Phytophthora infection, confirming a direct requirement for correct GSH homeostasis in defense responses. Compartment-specific measurements of the glutathione redox potential using redox-sensitive GFP showed that knockout of the entire transporter family resulted in a more oxidized glutathione redox potential in the cytosol, but not in the plastids, indicating the GSH-deficient phenotype is restricted to the cytosolic compartment. Expression of the transporters in Xenopus oocytes confirmed that each can mediate GSH uptake. We conclude that these transporters play a significant role in regulating GSH levels and the redox potential of the cytosol.T he potentially damaging end-products of aerobic energy metabolism, reactive oxygen species (ROS), are powerful signaling components linking growth, metabolism, and defense responses in cells (1-4). In plant cells, a complex antioxidant network with glutathione (GSH) at its center has evolved to buffer ROS. Because both the levels and oxidation state of GSH are directly influenced by ROS, GSH is a key redox-signaling component (5-10).GSH is synthesized in two steps (11) catalyzed by the ratelimiting glutamate-cysteine ligase (GSH1; EC 6.3.2.2) and glutathione synthase (GSH2; EC 6.3.2.3). In Arabidopsis, GSH1 is exclusively targeted to the plastid, while GSH2 is targeted to both plastid and cytosol (12). Consequently, the pathway intermediate, γ-glutamylcysteine (γ-EC), must be exported from the plastid to allow for cytosolic GSH biosynthesis. This finding was recently confirmed by the observation that inviable gsh2 mutants can be fully complemented by expression of functional GSH2 only in the cytosol (13), suggesting that thiol transport between compartments is essential for maintaining both GSH levels and redox-based signaling pathways, although no plastid thiol transporters have yet been identified (13-17).