During development, spatial-temporally patterned tissue-level stresses and mechanical properties create diverse tissue shapes. To understand the mechanics of small-scale embryonic tissues, precisely controlled sensors and actuators are needed. Previously, we reported a control-based approach named tissue force microscopy (TiFM1.0), which combines dynamic positioning and imaging of an inserted cantilever probe to directly measure and impose forces in early avian embryos. Here we present an upgraded system (TiFM2.0) that utilises interferometer positioning to minimise probe holder footprint, enhancing accessibility and imaging signal. This new design enables a double-probe configuration for bidirectional stretching, compression and stress propagation experiments. As proof-of-concept, we showcase a variety of examples of TiFM2.0 applications in chicken and zebrafish embryos, including the characterization of mechanical heterogeneities important for the morphogenesis of the chicken posterior body axis. We also present simplified designs and protocols for the replication of TiFM systems with minimal custom engineering for developmental biology labs.