Herbicide resistance mechanisms involve altered absorption, translocation, and metabolism of herbicides (i.e., glyphosate), and this is an important component in the study of herbicide resistance mechanisms as well. 14 C-herbicides are used in resistant weeds studies, since they provide some advantages in comparison with chemical measures, including greater sensitivity, stepwise description of a particular element in a metabolic system, herbicide position, detection through X-ray films and/or radio image, and liquid scintillation. However, an up-to-date, organized description and standardization of research procedures and methodology on the use of radioisotopes for detection of resistant weeds, through different mechanisms of absorption, translocation, and metabolism in comparison with susceptible weeds are lacking in the literature. Techniques that use 14 C such as tracers are extremely useful to study the herbicides behavior in the resistant weed, since the radiometric techniques offer the possibility of accurately determining very small amounts in a relatively short time. However, mechanism of resistance to herbicides in this resistant weed population compared with the susceptible population cannot be due to differential absorption, translocation, or metabolism of herbicide in weed; so other studies are necessary to elucidate the mechanism of herbicide resistance on weed population.