2022
DOI: 10.3390/jcp2040044
|View full text |Cite
|
Sign up to set email alerts
|

Differentially Private Block Coordinate Descent for Linear Regression on Vertically Partitioned Data

Abstract: We present a differentially private extension of the block coordinate descent algorithm by means of objective perturbation. The algorithm iteratively performs linear regression in a federated setting on vertically partitioned data. In addition to a privacy guarantee, we derive a utility guarantee; a tolerance parameter indicates how much the differentially private regression may deviate from the analysis without differential privacy. The algorithm’s performance is compared with that of the standard block coord… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?