Differentiation-arrested lung cell cultures were developed from fetal rats of various gestational ages. In contrast to previously published observations with cultures in a pO2 of approximately 142 mm Hg, cultures developed in a pO2 of approximately 30 mm Hg, close to the normal fetal arterial pO2, have improved plating efficiency and a slightly increased growth rate. They did not, however, show gestation-dependent increases of choline incorporation into phospholipids, nor did immature lung cell cultures respond to dexamethasone or triiodothyronine, singly or in combination, by increased choline incorporation into saturated lecithin. The incorporation of choline and glycerol into lipids suggested a mature rate of lipid synthesis by immature cultures at a pO2 approximately 30 mm Hg, despite preservation of an immature morphology. Electron microscope observations revealed no gross differences between immature cultures developed at either pO2. The cellular mechanisms underlying these differences are unclear but suggest that oxygen tension may significantly influence results obtained with in vitro studies of lipid synthesis by immature lung.