Microplastics are considered the most common waste in aquatic ecosystems, and studying them along with their interactions with biota are considered a priority. Here, results on the role of microplastics in the dispersion of microbes from terrestrial to aquatic ecosystems are presented. Data were obtained from microcosm experiments in which microplastics (plastic bags (BA), polyethylene bottles (BO), acrylic beads (BE), and cigarette butts (BU)) with their attached natural bacterial communities were inoculated in filtered and autoclaved lake water. The bacterial abundance on microplastics was estimated before inoculation using a protocol for the enumeration of sediment bacteria and ranged between 1.63 (BA) and 203.92 (BE) × 103 cells mm−2. Bacteria were released in the new medium, and their growth rates reached 5.8 d−1. In the attached communities, Beta- (21.4%) and Alphaproteobacteria (18.6%) were the most abundant classes, while in the free-living communities Gammaproteobacteria dominated (48.07%). Abundant OTUs (≥1%) of the free-living communities were associated with the genera Acinetobacter, Pseudomonas, Ecidovorax, Delftia, Comamonas, Sphingopyxis, and Brevundimonas and members of the FCB group. Members of these genera are known to degrade natural or man-made organic compounds and have recently emerged as opportunistic pathogens. Thus, besides trophic transmission, microplastics can directly release bacteria in the environment, which could affect the health of humans, animals, and ecosystems.