1980
DOI: 10.1109/tr.1980.5220684
|View full text |Cite
|
Sign up to set email alerts
|

Difficulties in Fault-Tree Synthesis for Process Plant

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
1

Year Published

1997
1997
2017
2017

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 34 publications
(7 citation statements)
references
References 9 publications
0
6
0
1
Order By: Relevance
“…Основные ограничения и затруднения, присущие методу диагностирования с помощью ДО, обсуждаются в работах [62,63]. Учет неопределенности во входных данных и множественность состояний рассматриваются в работах [64][65][66][67][68].…”
Section: рис 2 множество возможных интерпретаций пнг при построенииunclassified
“…Основные ограничения и затруднения, присущие методу диагностирования с помощью ДО, обсуждаются в работах [62,63]. Учет неопределенности во входных данных и множественность состояний рассматриваются в работах [64][65][66][67][68].…”
Section: рис 2 множество возможных интерпретаций пнг при построенииunclassified
“…From Equation 6 and Table 1 it can be seen that if the gradient residual after the fault report was less than -0.0203cm/sec a leak would be verified. As this condition has been satisfied the presence of a leak in the LH auxiliary tank can be confirmed.…”
Section: Verifying Leak Arisingsmentioning
confidence: 99%
“…The digraph technique, proposed by Lapp and Powers [5], models a system using the process variables present within the system, the relationships between them and the respective influences on the variables from within and outside the system. While this allows detailed system models to be produced, the technique is limited by its lack of flexibility, issues with two-way flow and is not suited for application to phased mission systems [4] [6]. The Petri net (PN) modelling technique was devised in the PhD of Carl Petri [7].…”
Section: Introductionmentioning
confidence: 99%
“…There are many methods for this, such as neural networks [6], Petri nets [7,15], fault tree [8], decision tree [9], etc., but there are some deficiencies in all respects. In this paper, the classical Bayesian network learning algorithm (K2 algorithm [11]) for fault detection [10] is applied to learn the sensorless drive network structure according to the data after the feature selection and weighting.…”
Section: Introductionmentioning
confidence: 99%