The powder diffraction patterns of spherical nanocrystals made of five different fcc metals were generated using atomistic models within a Molecular Dynamics simulation. Static and dynamic effects are interpreted and discussed within the framework of two different approaches, respectively, based on (1) a Reciprocal Space and (2) a Direct Space representation of diffraction. Chosen elements display a wide range of properties, especially related to material stiffness and elastic anisotropy, so to deeply challenge interpretation paradigms. The effect of the shape on static and dynamic features is also addressed.