A thin rigid plate is submerged beneath the free surface of deep water. The plate performs small-amplitude oscillations. The problem of calculating the radiated waves can be reduced to solving a hypersingular boundary integral equation. In the special case of a horizontal circular plate, this equation can be reduced further to onedimensional Fredholm integral equations of the second kind. If the plate is heaving, the problem becomes axisymmetric, and the resulting integral equation has a very simple structure; it is a generalization of Love's integral equation for the electrostatic field of a parallel-plate capacitor. Numerical solutions of the new integral equation are presented. It is found that the added-mass coefficient becomes negative for a range of frequencies when the disc is sufficiently close to the free surface.