We investigate time domain boundary element methods for the wave equation in R 3 , with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approximations in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations obtained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.Mathematics subject classification: 65N38, 65R20, 74J05.