The photochemistry
of methane caged within amorphous solid water
(ASW) is interesting as a model for studying interstellar and high-altitude
atmospheric pathways for the formation of more complex hydrocarbons.
Here, we report on the photoreactivity of clean methane and in the
presence of oxygen molecules, known as electron capture species, within
two 50 monolayer-thick D2O-ASW films adsorbed on Ru(0001)
substrate under ultrahigh vacuum conditions. Irradiation by 248 nm
UV photons (5.0 eV), where none of the involved molecules absorb these
photons in the gas phase, leads to the formation of diverse hydrocarbons.
In all cases, the presence of oxygen results in significantly enhanced
reactivity. The dissociative electron attachment mechanism with electrons
generated within the metal substrate is thought to largely govern
the photoreactivity in this system. Methyl radicals as the primary
photoproducts subsequently react with the surrounding water and neighboring
methane as well as with the stable O2
– anion. Postirradiation temperature-programmed desorption measurements
revealed cross sections for hydrocarbon formation in the range of
10–20 to 10–21 cm2.
Possible mechanisms underlying the formation of various hydrocarbons
and carbon dioxide as the final oxidation product are discussed.